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Phase-field models have been applied in recent years to grain boundaries in single-component systems. The
models are based on the minimization of a free energy functional, which is constructed phenomenologically
rather than being derived from first principles. In single-component systems, the free energy is a functional of
a “phase field,” which is an order parameter often referred to as the crystallinity in the context of grain
boundaries, but with no precise definition as to what that term means physically. We present a derivation of the
phase-field model by Allen and Cahn from classical density functional theory first for crystal-liquid interfaces
and then for grain boundaries. The derivation provides a clear physical interpretation of the phase field, and it
sheds light on the parameters and the underlying approximations and limitations of the theory. We suggest how
phase-field models may be improved.
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I. INTRODUCTION

The classical density functional theory �DFT� advanced
by Haymet and Oxtoby1,2 was developed to describe crystal-
liquid interfaces. In this paper, we will show how this theory
may be approximated in a transparent way to derive phase-
field models of crystal-liquid and grain boundary interfaces
in single-component systems. We will also discuss how clas-
sical DFT may be applied to grain boundaries in single-
component systems. At specified temperature and chemical
potential, atoms at the boundary are free to rearrange them-
selves to accommodate a fixed change of crystal orientation
on either side of the boundary. In principle, DFT provides an
exact treatment of these defects at the atomic level within a
grand canonical ensemble. The application of DFT to grain
boundaries is of considerable interest in itself as an alterna-
tive to grand canonical Monte Carlo simulations and molecu-
lar dynamics simulations.

Grain boundaries in single-component systems have been
modeled using phase-field approaches, most recently by
Carter and co-workers3,4 and Nestler and Wheeler.5 All of
these studies make use of an Allen-Cahn-type free energy
functional, obtained in the case of Carter and co-workers
after first integrating out an “orientation field.” These models
are based on the minimization of a free energy, which is
constructed phenomenologically, referring to symmetries,
relevant physical parameters, effective interactions, etc.,
rather than being derived from first principles. The free en-
ergy is a functional of a “phase field,” which is an order
parameter often referred to as the “crystallinity” in the con-
text of grain boundaries. The crystallinity is interpreted as a
measure of the local degree of structural order, but with no
attempt to define it more precisely.

Our aim in this paper is to derive a phase-field model for
crystal-liquid interfaces and grain boundaries in single-
component systems from classical density functional theory,

providing not only a clear physical interpretation of the
phase field but also an exposition of the various approxima-
tions along the way. The mapping also enables us to identify
limitations of phase-field modeling of interfaces and to sug-
gest how it may be improved.

We begin by outlining classical DFT and its application
by Haymet and Oxtoby to crystal-liquid interfaces, noting
key assumptions. While this derivation focuses on a thermo-
dynamic self-consistency equation, applying the same proce-
dure directly to the grand potential leads to the Allen-Cahn
equation and subsequently to a phase-field model for grain
boundaries recently introduced by Kobayashi et al.3 An in-
teresting by-product of the derivation of a phase-field model
for grain boundaries is the result that the energy and width of
a boundary are both predicted to be reduced when there is a
short common vector in the reciprocal lattices of both crys-
tals.

II. CLASSICAL DENSITY FUNCTIONAL THEORY

Following an integration over the momentum degrees of
freedom, the canonical partition sum6 in d dimensions for N
identical classical particles at positions r1 , . . . ,rN��, where
� is an arbitrarily large volume, interacting via a potential
VN�r1 , . . . ,rn� in an external potential U�r� is

ZN =
1

N!
�−dN�

�

ddr1 ¯ ddrN exp�− ��VN�r1, . . . ,rn�

+ �
i=1

N

U�ri��� , �1�

where
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� = � �h2

2m�
�1/2

�2�

is the de Broglie thermal wavelength. The Laplace transform
of the canonical partition sum is the grand canonical partition
sum

Z = �
N=0

�

e��NZN. �3�

This suggests the introduction of the dimensionless one-body
local potential, not to be confused with the effective one-
particle potential introduced later:

u�r� = �� − �U�r� . �4�

The dimensionless grand potential, W=W	u
=−ln Z, is then
a functional of the local potential u only, apart from the
implicit dependence on the interaction potential, and the tem-
perature which is assumed to be constant.

Introducing an operator �̂N�r ;r1 , . . . ,rn�=�i��r−ri� re-
veals that the particle density, which is the ensemble average
�·� of this operator, is given by functional differentiation of
the grand potential with respect to the local potential

��	u
;r� = ��̂N�r;r1, . . . ,rn�� = −
�W	u

�u�r�

. �5�

This can be seen by rewriting ��N−��i=1
N U�ri� as

�ddru�r��̂N�r ; . . . � in the grand canonical partition sum.
Taking a Legendre transform, the free energy

F	�
 = W	u
 + �
�

ddr���r��u�r�� �6�

produces the conjugates of the cumulants of the density, in
particular,

u�r� = u�	�
;r� =
�

���r�
F	�
 . �7�

The free energy of an ideal, i.e., noninteracting system,
where VN�0, can be integrated,

Fid	�
 = �
�

ddr��r�	ln„�d��r�… − 1
 , �8�

and immediately gives rise to the barometric formula ��r�id

=�−d exp(uid�r�). In an ideal system, the external potential
necessary to produce a given density profile is found simply
by inverting the barometric formula. For a given density pro-
file � observed in an interacting particle system, one can
calculate the local potential that would be needed in an ideal
system, uid, to produce the same density profile. The differ-
ence between the local potential u, operating in the interact-
ing system, and the ideal local potential is the effective one-
particle potential C�	�
 ;r�, defined as

C�	�
;r� = uid�	�
;r� − u�	�
;r� = ln„�d��r�… − u�	�
;r� .

�9�

In other words, an ideal system with local potential u+C has
the same density profile � as the interacting system with
local potential u.

Similarly, one defines the excess free energy

− 		�
 = F	�
 − Fid	�
 �10�

and finds by differentiation

�

���r�
		�
 = C�	�
;r� . �11�

Further differentiation of the effective one-particle potential
produces higher order correlation functions. In particular, the
direct correlation function C�2��	�
 ;r ,r�� is defined as

C�2��	�
;r,r�� �
�2

���r����r��
		�
 . �12�

Equation �12� immediately suggests an expansion of the ex-
cess free energy about a reference state, which in the follow-
ing will be the infinite homogeneous liquid with constant
density �0,

		�
 = 		� � �0
 + �
�

ddrC�	� � �0
;r�	��r� − �0


+
1

2
�

�

ddrddr�C�2��	� � �0
;r,r��


	��r� − �0
	��r�� − �0
 + ¯ . �13�

We use this expansion below to derive features of the crystal
phase from the reference system.14

Using the Ornstein-Zernike equation6 the Fourier trans-
form c�k� of the two-point direct correlation function over a
domain with volume V� in a translationally invariant system,
see Eq. �23�, can be directly related to the structure factor
S�k�,

S�k� = 	1 − �0V�c�k�
−1, �14�

so that the direct correlation function has a direct physical
and experimental meaning. It is, in fact, the only link to
experiment, which raises the question of how it is possible
that a perturbation theory about a liquid can describe features
of a crystal. For example, one might doubt that the tetrahe-
dral structure of crystalline silicon could be predicted from
the two-point direct correlation function of liquid silicon,
which has an average coordination number of 6. On the other
hand, the functional C�2��	�
 ;r ,r��, i.e., the direct correlation
function including its functional dependence on the density
within the entire system, contains all information about
higher order correlations through functional differentiation.
In Eq. �13�, C�2� is evaluated only at ��r���0, so the full
functional dependence is suppressed. A key assumption of
the theory is that by a judicious choice of �0, the expansion
in Eq. �13� can be made acceptable. This debate has appeared
prominently in the literature.7 On a more technical level, the
functional Taylor series 	Eq. �13�
 may have a finite “radius
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of convergence” in ��r�−�0, not extending beyond the liquid
phase, not least because a phase transition introduces singu-
larities.

III. APPLICATION TO INTERFACES

In all that follows, the approximations are based on the
two-point direct correlation function C�2��	���0
 ;r ,r��,
which is a function only of the separation �r−r�� in a homo-
geneous system. To ease notation, the homogeneous, infinite
reference liquid will be denoted by subscript 0, instead of
explicitly carrying the argument ���0. In this notation, the
one-particle potential of the reference system, which is as-
sumed to be homogeneous and to have vanishing local po-
tential u�r��u0=��, is related to its density by

C0 = ln��d�0� − �� , �15�

consistent with Eq. �9�.
We use the reference system to calculate features of an

interfacial system �distinguished by subscript i� for a given
local potential ui�r�, which amounts to finding a root �i�r� of
ui=�Fi	�
 /��. Equivalently, one can minimize the func-
tional

W̃�	�
,	ui
� = Fi	�
 − �
�

ddrui�r���r� �16�

with respect to �. At the minimum, ���i and W̃�	�i
 , 	ui
�
reduces to the grand potential, as seen in Eq. �6�. For a van-
ishing local potential in the interfacial system, ui���. The
expansion in Eq. �13� together with Eq. �15�, Eqs. �8� and
�10�, is the starting point for the DFT used by Haymet and
Oxtoby:1

W̃�	�i
,	ui � ��
� = �
�

ddr�	ln„�i�r��/�0… − 1
�i�r�� − 	0

+ �
�

ddr�C0�0

−
1

2
�

�

ddr��
�

ddr�C0
�2���r� − r���


	�i�r�� − �0
	�i�r�� − �0
 . �17�

It is worth stressing that the only approximation made so far
is the truncation of the functional Taylor series 	Eq. �13�
 at
second order.

To derive the results of Ref. 1 and 2, one requires that W̃
differentiated with respect to �i vanishes. Using C0

�2��r�
=C0

�2��−r�=C0
�2���r � �, this produces the self-consistency equa-

tion

0 = ln �i�r�/�0 − �
�

ddr�C0
�2���r − r���	�i�r�� − �0
 , �18�

which can also be obtained by expanding the effective one-
particle potential in a functional Taylor series. It is very dif-
ficult to find a root �i for this equation satisfying particular
boundary conditions far from the interface.

Physically, it is very appealing to represent the density in
a pseudo-Fourier sum1,7

�i�r� = �0�1 + �
n

�n�r�eıknr� , �19�

with reciprocal lattice vectors kn indexed by n�Zd. For sim-
plicity, we have assumed that the crystal has a monatomic
basis. In crystals with more than one atom in the basis, there
will be additional phase factors in the pseudo-Fourier expan-
sion. At a crystal-liquid interface, there is only one crystal
lattice, but at a grain boundary, there is one set of reciprocal
lattice vectors for each crystal, and the expansion in Eq. �19�
is over the union of reciprocal lattice vectors of the two
crystals. In the following derivation, we will not make use of
any specific properties of �kn� other than its discreteness and
completeness 	see Eq. �27�
, as well as its orthogonality 	see
Eq. �24�
, which all necessitate a finite Fourier domain, in-
troduced in Eq. �20� as the volume V. For grain boundaries,
it follows that the derivation applies only to cases where a
three-dimensional coincidence site lattice8 �CSL� exists with
a reasonably small unit cell.

Owing to the spatial dependence of the coefficients �n�r�,
Eq. �19� is not a true Fourier sum. However, it can accom-
modate every density �i�r�, even if the density is not peri-
odic. While the spatial dependence has, a priori, the unfor-
tunate consequence that individual coefficients �n�r� cannot
be calculated by projecting �i�r� onto the functions e−ıknr, the
spatial dependence of the coefficients can be thought of as a
means to separate length scales. The atomic-scale density
variations are captured by the exponential exp�ıknr�, while
more gradual changes in density are captured by �n�r�. We
discuss below how the �n�r̃� for different r̃ can be obtained
by taking a local Fourier integral within a volume V�r̃�,

�n�r̃��0 = V−1�
V�r̃�

ddr�i�r�e−ıknr for n � 0 �20�

and �0	1+�0�r̃�
=V−1V�r̃�d
dr�i�r�. Here, V�r̃� denotes the

domain the integral is running over, a parallelepiped of vol-
ume V which is a unit cell of the coincidence site lattice or a
multiple thereof.

Using the new representation Eq. �19� in the self-
consistency equation �18� and expanding the �n�r�� about r
give for Eq. �18�

ln�1 + �
n

�n�r�eıknr� = V��0�
n

eıknr��n�r�c�kn�

− ı��r · �k��n�r�c�kn�

−
1

2
��r · �k�2�n�r�c�kn� + ¯ � ,

�21�

where

�
�

ddr�C0
�2���r − r���e−ık�r−r�� = V�c�k� �22�

has been used, based on the definition
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c�k� = V�−1�
V�

ddr�e−ıkr�C0
�2��r�� . �23�

The central idea is that V� is so large that C�2� vanishes
outside this volume and that � is sufficiently large that the
failure of Eq. �22� due to the shift by r when writing Eq. �22�
as Eq. �23� is negligible.

So far, only two approximations have been made, the
functional Taylor series of the excess free energy and the
Taylor series for the pseudo-Fourier coefficients �n. It is per-
haps not surprising that Eq. �21� remains just as intractable
as Eq. �18�, which becomes obvious by taking a Fourier
transform over the domain V�r̃� centered at r̃�� on both
sides of Eq. �21�:

V−1�
V�r̃�

ddre−ıkmr ln�1 + �
n

�n�r�eıknr�
= V−1�

V�r̃�
ddre−ıkmrV��0�

n
eıknr��n�r�c�kn�

− ı��r · �k��n�r�c�kn� −
1

2
��r · �k�2�n�r�c�kn� + ¯ � .

�24�

The problem is the r dependence of the coefficients �n�r�
which renders the orthogonality of the exponentials on the
right-hand side unexploitable. On the other hand, the repre-
sentation in Eq. �19� has not yet been fully exploited, in
particular, no use has been made so far of the many degrees
of freedom in the parametrization.

Haymet and Oxtoby achieved a separation of length
scales by utilizing the parametrization 	Eq. �19�
. First, they
introduced a family of density profiles indexed by r̃,

��r; r̃� = �0�1 + �
n

�n�r̃�eıknr� , �25�

which coincides with Eq. �19� for r̃=r. Second, they replace
�n�r� by �n�r̃� in Eq. �21�, requiring that the �n�r̃� at fixed
r̃ are solutions of a slightly different problem,

ln�1 + �
n

�n�r̃�eıknr� = V��0�
n

eıknr��n�r̃�c�kn�

− ı��r · �k��n�r̃�c�kn�

−
1

2
��r · �k�2�n�r̃�c�kn� + ¯ � ,

�26�

and therefore,

V−1�
V�r̃�

ddre−ıkmr ln�1 + �
n

�n�r̃�eıknr�
= V−1�

V�r̃�
ddre−ıkmrV��0�

n
eıknr��n�r̃�c�kn�

− ı��r · �k��n�r̃�c�kn� −
1

2
��r · �k�2�n�r̃�c�kn� + ¯ �

= V��0��m�r̃�c�km� − ı��r · �k��m�r̃�c�km�

−
1

2
��r · �k�2�m�r̃�c�km� + ¯ � , �27�

corresponding to Eq. �24�. For a complete, discrete set of
reciprocal lattice vectors �kn� 	Eq. �27�
 is equivalent to Eq.
�26�; in other words, Eq. �26� is implied by Eq. �27� only if
Eq. �27� applies to the entire set of reciprocal lattice vectors.

The solutions of Eq. �27� for each fixed r̃ are periodic
density profiles �see Fig. 1� of systems in a certain periodic
external potential, and it is plausible to assume that solutions
in the form �n�r̃� exist. Moreover, Eq. �26� evaluated at r̃
=r coincides with Eq. �21�, so that any set of solutions of Eq.
�27� also represents a solution of Eq. �24�. In other words,
Haymet and Oxtoby construct a family of physical systems
parametrized by r̃ in an external potential, the density pro-
files of which are given by �n�r̃� and can be used to con-
struct a solution of the interfacial problem 	Eq. �24�
 by
evaluating Eq. �25� at r̃=r.

Because Eq. �27� can also be obtained by assuming in Eq.
�24� that the �n�r� vary so little within V�r̃�, they can be
replaced by �n�r̃� 	see Eq. �20�
, and going from Eq. �24� to
Eq. �27� is equivalent to a separation of length scales.15 This
separation of length scales validates Eq. �20�. It is illustrated
in Fig. 1, where the Fourier coefficient �n�r̃� obtained by
taking a Fourier integral over a small domain centered at r̃
gives rise to a density profile that can be periodically contin-
ued throughout the system but coincides almost perfectly
with the actual density �i�r� within V�r̃�.

Small V are desirable so that the separation of length
scales as encapsulated in Eq. �20� applies with no or only
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FIG. 1. Cartoon of a local Fourier transform. The full line shows
the actual density profile ��r� within a system of size � param-
etrized by an expression such as Eq. �19� which contains a space
dependent pseudo-Fourier coefficient. A Fourier transform taken
over the small region V marked by the dashed lines around r̃ pro-
duces coefficients that reproduce the density locally �shown as thick
line� and can be continued periodically throughout the system �dot-
ted line�. The inset shows the two-point direct correlation function
C�2��r� which drops to a negligible value outside the domain V�.
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small corrections. For a grain boundary, the volume V is a
unit cell of the CSL, so that large � boundaries are expected
to be less reliably treated. Similarly, small V� are desirable so
that the expansion in Eq. �21� has only small corrections,
which implies that shorter-ranged direct correlation functions
are easier to handle in this formalism. The size of both vol-
umes is to be compared to the scale on which �n�r� change.

We see in Eq. �27� that the separation of length scales
embodied in Eq. �25� simplifies the original equation �24�
dramatically by enabling the orthogonality of the functions
exp�iknr� to be exploited. Instead of finding roots �n�r� for
all kn and all r�� of the original integral equation Eq. �24�
simultaneously, the integrodifferential equation 	Eq. �27�

can, in principle, be integrated, as both sides are local in r̃.
As shown in Ref. 2, the �n�r� can be considered positions of
particles in a �complicated� potential at “time” r projected on
the interface normal. In DFT, the next steps would consist in
determining the necessary degrees of freedom, incorporating
all symmetries and prescribing a procedure to find the roots
�n�r̃� for every n and r̃.

IV. DERIVATION OF PHASE-FIELD MODELS

A. Crystal-liquid interfaces

We will now build on the approximations, expansions,
and parametrizations described in the previous section to de-
rive an Allen-Cahn phase-field model for crystal-liquid inter-
faces from the grand potential 	Eq. �17�
. In the next section,
we will derive a phase-field model for grain boundaries.

The grand potential W̃ in the form Eq. �17� is reparam-
etrized using Eq. �19�, and the integrals over � rewritten as
�ddr�=�ddr̃V−1V�r̃�d

dr�:

W̃�	�i
,	ui � ��
�

= �
�

ddr̃V−1�
V�r̃�

ddr��ln�1 + �
n

�n�r��eıknr�� − 1�

�0�1 + �

n
�n�r��eıknr�� − 	0 + �

�

ddr�C0�0

−
1

2
�0

2�
�

ddr̃V−1�
V�r̃�

ddr��
�

ddr�C0
�2��r� − r��


�
nm

�n�r���m�r��eı�knr�+kmr��. �28�

As in the calculation of the Fourier coefficients of C�2�, see
Eq. �23�, the equality between the single integral over � and
the double integral over individual volumes V�r̃� centered at
r̃ ignores surface terms and holds only in the limit of infinite
or periodic �, because the volume V�r̃� at a point r̃ close to
the surface of � might not be fully within �. After expand-
ing the coefficients �m�r�� about r� and using the definition
Eq. �23� �in the notation �kc�−kc�= ��k�−km

c�k� and noting
that c�−k�=c�k�, etc.�, the last triple integral becomes

V��
�

ddr̃V−1�
V�r̃�

ddr��
nm

�n�r����m�r��c�km�

− ı��r · �k��m�r��c�km�

−
1

2
��r · �k�2�m�r��c�km� + ¯ �eı�kn+km�r�, �29�

which is very similar to the right-hand side of Eq. �21�. As-
suming a perfect separation of length scales, so that the
�n�r�� do not change within the volume of a unit cell V,
allows us to replace �n�r�� by �n�r̃� within the integrals over
V�r̃� and to make use of the orthogonality of the exponen-

tials, so that W̃ becomes

W̃�	�i
,	ui � ��
�

= �
�

ddr̃V−1�
V�r̃�

ddr��ln�1 + �
n

�n�r̃�eıknr�� − 1�

�0�1 + �

n
�n�r̃�eıknr�� − 	0 + �

�

ddr�C0�0

−
1

2
�0

2V��
�

ddr̃�
n

�−n�r̃���n�r̃�c�kn�

− ı��r · �k��n�r̃�c�kn�

−
1

2
��r · �k�2�n�r̃�c�kn� + ¯ � . �30�

This is the final result for the grand potential. Differentiating
with respect to �−j�r̂� gives

�

��−j�r̂�
W̃�	�i
,	ui � ��
�

= V−1�
V�r̂�

ddr��0eık−jr� ln�1 + �
n

�n�r̂�eıknr��
− �0

2V���j�r̂�c�kj� − ı��r · �k��j�r̂�c�kj�

−
1

2
��r · �k�2�j�r̂�c�kj� + ¯ � �31�

using, again, c�kj�=c�k−j�, �kc�kj�=−�kc�k−j�, etc., and
k−j=−kj. Moreover, we made use of

�

�f�x� � dyf��y�g�y� = − g��x� , �32�

which is obtained by ignoring surface term in an integration
by parts. This is particularly important when trying to in-
clude into a functional the first derivatives, �r�n�r�, reminis-
cent of a Rayleigh friction term in a mechanical interpreta-
tion.

Equation �31� is to be compared to Eq. �27�, the original
result by Haymet and Oxtoby, which is reproduced by Eq.

�31� by requiring �
��−j�r̂�W̃�0. The time evolution of �j�r̂� is

usually set equal to that derivative,
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�̇j�r̂� = − M
�

��j�r̂�
W̃ , �33�

with mobility M �which can be absorbed into the definition
of time�, driving the system to the above mentioned root.
This is precisely the mechanism used in many phase-field
models.

Further simplifications are needed to write the grand po-
tential 	Eq. �30�
 in Allen-Cahn form. The set of independent
amplitudes �n�r̃� is replaced by a single scaling amplitude
��r̃� by writing

�n�r̃� = ��r̃��n
0 , �34�

with constant amplitudes �n
0 chosen to represent a crystalline

phase, so that ��r̃�=1 corresponds to the crystalline phase,
while ��r̃�=0 suppresses all structure, corresponding to a
liquid with density �0. The field � therefore is to be inter-
preted as the order parameter, proportional to the local am-
plitude of the atomic density waves, i.e., � is the crystallin-
ity. The common amplitude ��r̃� is necessarily real, because
� being real implies �n�r�*=�−n�r� and together with �n

0*

=�−n
0 �see below� we therefore have ��r̃�*=��r̃�.
Collecting all local contributions in the density,

w„��r̃�… = V−1�
V�r̃�

ddr��ln�1 + �
n

�n
0��r̃�eıknr�� − 1�


�0�1 + �
n

�n
0��r̃�eıknr�� − 	0���−1 + C0�0

−
1

2
�0

2V���r̃�2�
n

�n
0�−n

0 c�kn� , �35�

where ��� is the total volume of the system, the grand poten-
tial 	Eq. �30�
 simplifies to

W̃�	�
� = �
�

ddrw„��r�…

+
1

2
�0

2V��
�

ddr̃�
n

��r̃��−n
0 �ı��r · �k���r̃��n

0c�kn�

+
1

2
��r · �k�2��r̃��n

0c�kn�� , �36�

which can be simplified further by ignoring the surface terms
of the integral ddr̃��r̃��r��r̃� so that the remaining integral
containing derivatives of ��r� has the structure

�
�

ddr̃��r̃��
n

�−n
0 �n

0��r · �k�2��r̃�c�kn� . �37�

To simplify this expression, the set of reciprocal lattice vec-
tors kn in the sum must be reduced. We use the index n0 to
indicate that we are considering only a subset �kn0� of all
possible reciprocal lattice vectors �kn�. In the simplest ap-
proximation, the set is reduced to the set comprising only the
shortest �nonvanishing� reciprocal lattice vectors, �kn0�. This
set �kn0� forms a “star” which means that elements of this set
are related by point symmetry operations of the reciprocal

lattice �for further details see the Appendix�, so that the star
is invariant under these operations. If the real-space lattice is
fcc, for example, the reciprocal lattice is bcc and the eight

nearest neighbor reciprocal lattice vectors 111, 1̄11, . . . , 1̄1̄1̄
form the star of shortest length vectors. By including only
the shortest reciprocal lattice vectors, the symmetry and lat-
tice constant of the crystalline structure are described cor-
rectly by the truncated Fourier expansion. The approximation
can be systematically improved by including stars of longer
reciprocal lattice vectors.

Symmetry requires that all coefficients �n0
0 as introduced

in Eq. �34� associated with any of the vectors kn0 within the
same star have equal magnitude. Inversion symmetry in the
real-space lattice ensures that �−n0

0 =�n0
0 , if we impose that

the center of inversion coincides with a site. Since �n0
0*

=�−n0
0 by reality of �, all �n0

0 are real and therefore equal,
�n0

0 =�0. It is this equality which is needed to simplify Eq.
�37�, by allowing us to place �−n

0 �n
0 in front of the remaining

sum, which is dealt with in the following.
The direct correlation function of the bulk liquid is isotro-

pic, c�k�= c̃��k��, so that the second derivative with respect to
wave-vector components 1�d and 1�d in Eq. �37�
can be written as

�k�
�k�

c�k� =
���

�k�
c̃���k�� −

k�k�

�k�3
c̃���k�� +

k�k�

�k�2
c̃���k�� .

�38�

In a sum of the form

�
kn0

��r · �k�2��r̃�c�kn0� = �
kn0

�
�=1

d

�
�=1

d

�k�
�k�

�x̃�
�x̃�

��r̃�c�kn0�

= �
kn0

�
�,�

d � ���

�kn0�
c̃���kn0��

−
kn0,�kn0,�

�kn0�3
c̃���kn0��

+
kn0,�kn0,�

�kn0�2
c̃���kn0����x̃�

�x̃�
��r̃� ,

�39�

where the kn0 run over all elements of the star �kn0�, the
contributions of off-diagonal elements, ���, vanish after
taking the summation over the star kn0, if one assumes a
cubic crystal system. Only the diagonal elements remain, and
by symmetry, each Cartesian component contributes
��kn0�k�

2 = �q /d��k�2, where q= ��kn0�� is the cardinality of the

star, i.e., the number of elements in �kn0�. The dimension d is
the dimension of the space spanned by the star. For example,
the eight nearest neighbors in a bcc lattice �the reciprocal
lattice of an fcc lattice� would have q=8 and d=3.

The proof of this simplification is based on the great or-
thogonality theorem of group theory9 as detailed in the Ap-
pendix. The assumption of cubic symmetry ensures that there
is always a three-dimensional, unitary, irreducible represen-
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tation of the point group. The assumption can be lifted if one
allows for anisotropic terms �see the Appendix�, reflecting
the anisotropy of the lattice. In the following, we consider
only cubic crystal systems.

The sum in the integrand of Eq. �37� now becomes

�
kn0

��r̃��−n0
0 ��r · �k�2��r̃��n0

0 c�kn0�

= �q�d − 1�
�k0�d

c̃���k0�� +
q

d
c̃���k0����0

2��r̃��r
2��r̃�

= − �k0
��r̃��r

2��r̃� , �40�

where we have used �k0� to denote the magnitude of any
member of the star �kn0�, and we have introduced the cou-
pling �k0

defined as

�k0
= − �q�d − 1�

�k0�d
c̃���k0�� +

q

d
c̃���k0����0

2. �41�

The expression for �k0
simplifies further because the struc-

ture factor 	Eq. �14�
 usually peaks at the shortest reciprocal
lattice vector,7 so that c̃� vanishes and c̃��0. In that case,

�k0
=

q

d
�c̃���k0����0

2, �42�

which enters the grand potential 	Eq. �36�
 as follows:

W̃AC�	�
� = �
�

ddr�w„��r�… +
1

4
�0

2V��k0
„�r��r�…2� ,

�43�

ignoring surface contributions again. Functional differentia-
tion of Eq. �43� with respect to the phase field ��r� then
reproduces the Allen-Cahn equation10

�̇ = − M�dw

d�
−

1

2
�0

2V�
g

d
�c̃���k0����0

2�r
2��r�� , �44�

in which the relaxational assumption

�

��
W̃ = − M

d

dt
� ,

�with mobility M� has been made to drive W̃	�
 to a mini-
mum with respect to �.

The above analysis may be improved by including more
stars of reciprocal lattice vectors than just the shortest. In-
deed, the entire reciprocal lattice can be decomposed into
disjoint stars without double counting. The sum over more
than one star �kn0� produces an effective coupling

� = �
�kn0�

�kn0, �45�

replacing �k0
in Eq. �43�.

B. Grain boundaries

As noted in Sec. III, we confine ourselves to misorienta-
tions where there is a CSL with a relatively small three-

dimensional unit cell to ensure that the finite Fourier domain
V�r� in the separation of length scales 	see Eq. �20�
 does not
lead to significant errors. In practice, this limits the treatment
to grain boundaries in cubic lattices, where such CSLs arise
frequently.

In the simplest treatment of a grain boundary, we consider
one set of shortest length reciprocal lattice vectors in each
crystal, which we call Sl= �kn0

l � and Sr= �kn0
r � for the left and

right crystals, respectively. Again, both these sets form stars,
see Appendix, and they are related by the rotation that gen-
erates the misorientation in the bicrystal. The atomic densi-
ties deep in the left and right crystals are described by den-
sity waves with wave vectors that are elements of these stars,
and with equal amplitudes �n0

l =�0
l and �n0

r =�0
r , respec-

tively, similar to the situation in the crystal-liquid interface.
That does not mean, however, that all wave vectors have
nonzero amplitudes: For example, if a wave vector in the
right star is not also member of the left star, then its ampli-
tude �n0

l vanishes identically by symmetry. Amplitudes are
nonzero and equal within the respective stars. Again, it is this
equality that is used in the following to simplify the expres-
sions.

In the spirit of Eq. �34�, we approximate the spatial de-
pendence of the amplitudes ��n0�r̃�� by introducing a phase
field ��r̃� for the grain boundary in the form

�n0�r̃� = 	1 − ��r̃�
�n0
l + ��r̃��n0

r . �46�

To satisfy the boundary conditions far from the boundary
plane, ��r̃� must vary from 0 deep in the left-hand crystal to
1 deep in the right-hand crystal. However, this form of
��n0�r̃�� does not allow for density waves which have non-
zero amplitudes only in the grain boundary core, thereby
restricting the degrees of freedom available to the system.
There is no such restriction in place at the starting point of
the derivation, Eq. �30�, which included, in principle, all k
vectors of the direct sum of the two stars, i.e., the entire
“DSC16 lattice.”8

At closer inspection, the parametrization �46� of �n0�r̃�
makes a slightly different use of the crystallinity ��r̃�, as it
forces the system to be, on average, a superposition of both
crystalline lattices: As one is gradually “switched off,” the
other is gradually “switched on,” so that ��r̃� is the crystal-
linity of the right lattice and 1−��r̃� is the crystallinity of the
left lattice. Reciprocal lattice vectors common to both lattices
are predicted by Eq. �46� to be constant throughout the bic-
rystal, if �0

l =�0
r . Even if �0

l ��0
r , the parametrization �46�

disallows the possibility of a disordered grain boundary
structure where all the ��n0�r̃�� are locally zero. To resolve
this problem, an alternative form of Eq. �46� is needed, for
example, �n0 = �1 /2��	�1+���n0

l + �1−���n0
r 
, with � vary-

ing from −1 to 1. Yet, by continuity, such a form would force
the grain boundary to be disordered somewhere.4 In the fol-
lowing, we will use Eq. �46�, which leads to the Allen-Cahn
equation in a natural way.

To see how the two different stars enter, the following
derivation is presented in some detail. Inserting Eq. �46� in
Eq. �30� produces the sum
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�
kn0

�	1 − ��r̃�
�n0
l + ��r̃��n0

r ���r · �k�2�	1 − ��r̃�
�n0
l

+ ��r̃��n0
r �c�kn

0� , �47�

which can be rewritten as four sums,

�
kn0

�1 − ���n0
l ��r · �k�2�1 − ���n0

l

+ �
kn0

�1 − ���n0
l ��r · �k�2��n0

r

+ �
kn0

��n0
r ��r · �k�2�1 − ���n0

l

+ �
kn0

��n0
r ��r · �k�2��n0

r . �48�

In the grand potential, these sums are integrated over all
space, see Eq. �37�. A term of the form ���r ·�k�2�1−��
therefore equals �1−����r ·�k�2� following integration by
parts and ignoring surface terms, which, in turn, equals
−���r ·�k�2� after ignoring surface terms again. The first
sum in Eq. �48�, for example, then reads

�
kn0

�1 − ���n0
l ��r · �k�2�1 − ���n0

l

= �
kn0

��n0
l ��r · �k�2��n0

l

= �
Sl

��n0
l ��r · �k�2��n0

l , �49�

where the last equality is due to the coefficients �n0
l vanish-

ing for those k vectors that are not member of the left star.
For those k vectors that are members, on the other hand, the
corresponding coefficients �n0

l are all equal to �0
l , which can

be placed outside the sum. Applying the same procedure to
all four sums in Eq. �48� gives17

�
Sl�Sr

�	1 − ��r̃�
�n0
l + ��r̃��n0

r ���r · �k�2


�	1 − ��r̃�
�n0
l + ��r̃��n0

r �

= �0
l2�

Sl

��r̃���r · �k�2��r̃� + �0
r2�

Sr

��r̃���r · �k�2��r̃�

− 2�0
l �0

r�
I

��r̃���r · �k�2��r̃� . �50�

The intersection I=Sl�Sr contains the reciprocal lattice vec-
tors common to both stars, for which the product �n0

l �n0
r is

nonzero. The intersection is assumed to be itself a star �see
the Appendix for details�. To Eq. �50�, the simplification
based on the great orthogonality theorem �see the Appendix�
can be applied. Because the space spanned by I is potentially
only a subvector vector space of Rd, a projection matrix PI
needs to be introduced, which projects any vector of Rd to
this subvector space. For the cubic systems, we are focusing
on here, this subvector space has either dimension dI=0 in
which case PI=0, or dI=d in which case PI=1 is the identity

matrix, or dI=1 in which case one spatial direction, say, z,
can be chosen to coincide with the common direction. Using
the great orthogonality theorem, Eq. �50� becomes

�
Sl�Sr

�	1 − ��r̃�
�n0
l + ��r̃��n0

r ���r · �k�2


�	1 − ��r̃�
�n0
l + ��r̃��n0

r �c�kn0�

= ��0
l2 + �0

r2���r̃��q�d − 1�
�k0�d

c̃���k0�� +
q

d
c̃���k0����r

2��r̃�

− 2�0
l �0

r��r̃�� qI

�k0�
c̃���k0���r

2 −
qI

�k0�dI
c̃���k0���rPI�r

+
qI

dI
c̃���k0���rPI�r���r̃� , �51�

where the stars Sl and Sr each contain q elements, I contains
qI elements, and dI is the dimension of the space spanned by
I. The two terms in Eq. �51� have the same prefactor if �0

l

=�0
r =�0, which is a physically sensible choice we adopt

henceforth.
Suppose there is no misorientation between the crystal

lattices. Then, there is no grain boundary and Eq. �51� should
reduce to zero. With no misorientation, we would have Sl
=Sr= I, so that qI=q, dI=d, and PI=1. Substitution of these
values into the right-hand side of Eq. �51� shows that it does
indeed vanish.

We identify in Eq. �51� an isotropic coupling term in
which

�i = − 2�0
2�q�d − 1�

�k0�d
c̃���k0�� +

q

d
c̃���k0��� + 2�0

2� qI

�k0�
c̃���k0���

�52�

multiplies −��r̃��r
2��r̃�. There is also a possibly anisotropic

coupling term multiplying −��r̃��rPI�r��r̃�:

�a = 2�0
2�−

qI

�k0�dI
c̃���k0�� +

qI

dI
c̃���k0��� . �53�

This last term is not necessarily anisotropic, because for the
particular choice of stars, PI might be 0 or the identity. In a
cubic system, if PI is nonzero and nontrivial for a given pair
of stars, it is equal to any nonzero, nontrivial PI produced by
any other pair of stars. If the approximation is improved by
adding further pairs of stars, they will all generate the same
types of terms, namely, either multiplying �r

2 or �rPI�r.
The resulting grand potential has again square gradient

form,

W̃AC�	�
� = �
�

ddr�w„��r�… +
1

4
�0

2V���i„�r��r�…2

+ �a�r��r�PI�r��r��� . �54�

We note the difference in sign for the two couplings, Eqs.
�52� and �53�, which becomes most obvious when c̃�=0.
Thus, we have shown that common reciprocal lattice vectors
reduce the square gradient term in the interfacial energy, re-
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sulting in a lower interfacial energy and a smaller interfacial
width, the characteristic scale of which is given by the cou-
pling �i+�a, which has the dimension of a length squared.
The smaller this coupling, the smaller the penalty for rapid
changes in �. The amount of the reduction by common re-
ciprocal lattice vectors depends on the magnitude of the sec-
ond derivative c̃���k0��, which decreases with increasing �k0�.
Thus, the shorter the common reciprocal lattice vectors, the
larger their influence on the width and energy of the bound-
ary. The influence of common reciprocal lattice vectors on
the boundary energy has been known for a long time,8 but
we are not aware that their influence on the boundary width
has been noted before.

V. DISCUSSION

In this paper, we have shown how the classical density
functional theory of Haymet and Oxtoby may be modified to
produce an Allen-Cahn-type free energy functional first for
crystal-liquid interfaces and then for grain boundaries. For
both types of interface, the phase field is identified with the
amplitudes of atomic density waves, providing a physical
interpretation of the crystallinity of phenomenological phase-
field models.

Let us consider first the approximations that were required
to derive an Allen-Cahn free energy functional from classical
density functional theory. To obtain Eq. �21�, only two ap-
proximations were made. First, the excess free energy func-
tional was expanded and the resulting series was truncated at
the second order term, see Eq. �18�. Second, the Taylor series
for �n�r�� about r in Eq. �21� was also truncated at the
second order term. In principle, both these expansions may
be taken to higher order terms, although not without a sig-
nificant increase in complexity. This would be the natural
way to extend a phase-field model to higher order terms with
parameters related to fundamental quantities such as higher
order correlation functions.

The key step which lead to Eq. �30� for the grand poten-

tial W̃, and eventually to a phase-field model, was the sepa-
ration of length scales. This separation is already implicit in
the truncation of the Taylor expansion for �n�r� at the sec-
ond order terms. Higher order terms in the Taylor expansion
would be needed if the envelope of the atomic-scale varia-
tions of the density were more rapidly varying, e.g., at an
atomically abrupt interface. Our derivation of an Allen-Cahn
free energy functional has resulted from making a consistent
set of approximations that may be justified only when the
envelope of atomic-scale density variations is indeed slowly
varying, i.e., the interface is diffuse rather than sharp.

The approximations mentioned so far were those of clas-
sical density functional theory of crystal-liquid interfaces as
implemented by Haymet and Oxtoby. To obtain a phase-field
model for a crystal-liquid interface, two further approxima-
tions were necessary. First, the spatial dependence of all
�n�r� was assumed to be described by a single field, the
“phase field” ��r�. While classical density functional theory
naturally handles a larger set of density waves with indepen-
dent amplitudes �n, phase-field modeling in single-
component systems to date has considered only a single or-

der parameter, which we have identified as being
proportional to the local amplitude of the atomic density
waves. The obvious deficiency is the highly restricted nature
of the configurational phase space made available to the
crystal-liquid interface. When the same approach is adopted
for a grain boundary, see Eq. �46�, the restrictions are even
more severe. Second, all �n0

l and �n0
r within a star are as-

sumed to be identical and real, which suppresses any relative
phase factor of the density waves. For example, if there were
a rigid translation of one crystal relative to the other on either
side of the grain boundary, this would lead to complex den-
sity wave amplitudes in one crystal. The simplistic assump-
tion made in Eq. �50� eliminates the possibility of any rigid
body relative translation.

It is clear that there are quite severe limitations of current
phase-field models of grain boundaries in single-component
systems, at least when they are interpreted in the framework
of classical density functional. Can we use DFT to indicate
how these phase-field models may be improved? We have
already seen that going beyond the second order term in the
expansion 	Eq. �18�
 will introduce higher order correlation
functions and hence more information about structure and
bonding. Indeed, going to at least third order correlation
functions would seem to be necessary in covalent crystals
such as silicon. This would introduce higher order terms in
the grand potential 	Eq. �30�
 and in the Allen-Cahn free
energy functional 	Eq. �43�
 with parameters that are directly
related to the higher order correlation functions. However,
perhaps the most obvious and pressing improvement would
be the introduction of a second independent phase field to
describe the amplitudes of two sets of density waves, one for
each crystal. Far from the interface, the crystal structures are
related by a rotation. If we also wish to be able to predict a
relative rigid body translation between the crystals, with
components parallel and perpendicular to the interface, it
will be necessary to allow the density wave amplitudes of
one crystal to be complex.

A program very similar to ours has been followed by
Khachaturyan11 who uses the parametrization 	Eq. �25�
 and
the separation of length scales directly in an equation of mo-
tion for the phase field. In order to reduce the number of
degrees of freedom, Khachaturyan also introduces a common
amplitude 	Eq. �34�
 for the Fourier coefficients associated
with the star of “slowest” k vectors, i.e., the k vectors with
the longest relaxation time.
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APPENDIX: SUMMING OVER A STAR

In this appendix, we derive the equations based on the
great orthogonality theorem, as used in Eqs. �40� and �51�. In
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particular, we will identify their prerequisites and possible
extensions.

The aim is to simplify expressions of the form

�
��

�
kn0

kn0,�kn0,�v�w� = �
��

M��v�w�, �A1�

where we may interpret M�� as an element of a matrix M.
Introducing bra and ket notation for convenience, the matrix
M can be expressed as

�
kn0

�kn0��kn0� = M . �A2�

In Eqs. �A1� and �A2�, the sums run over a set of vectors
�kn0��Rd of equal length, which, for the time being, we will
call a “star.” This term will be defined properly in the next
section.

The star is picked from the reciprocal lattice, and it is
expected to display some point group symmetries of this
lattice, in the sense that these point group operations affect
only a permutation of members of the star, so that the star
itself remains invariant. We assume that the star under con-
sideration is invariant under a group of order g, which has a
unitary, irreducible representation �Un�, n=1, . . . ,g, and that
this representation has the same dimension d as the vectors
that make up the star. Acting with Un from the left and with
Un

† from the right on both sides of Eq. �A2� merely amounts
to a permutation of the summands, because of the invariance
of the star. Therefore, M commutes with any group element,

UnMUn
† = M , �A3�

so that �nUnMUn
†=gM and therefore

gMkl = �
n

g

�
i,j

d

�Un�kiMij�Un
†� jl = �Tr M�

g

d
�kl, �A4�

where in the last equality we have used the great orthogonal-
ity theorem �for unitary representations�,

�
n

g

�Un�ki�Un
†� jl =

g

d
�kl�ij . �A5�

By construction, the trace Tr M is the sum over the squares
of the moduli of all vectors in the star, which all have the
same length, which we call �k0�. So, if the cardinality of the
star is q, then Tr M =q�k0�2 and one finally arrives at the
general result

�
kn0

kn0,�kn0,� =
q

d
�k0�2���, �A6�

provided there exists a group under which the star is invari-
ant and for which there is a unitary, irreducible representa-
tion of the same dimension as the vectors that make up the
star.

The fact that the great orthogonality theorem applies only
to irreducible representations of the group is a limitation of
the above derivation, which motivates the following exten-
sion. By construction, the rank of the matrix M is d, which is
the dimension of the vector space the kn0 are taken from. A

priori, it is unknown whether there exists a group under
which the star is invariant and that has an irreducible, unitary
representation with dimension d. Equation �A6� applies only
if a suitable group and a suitable representation exist.

If the star spans a subvector space of dimension d� less
than d, one cannot expect that it is invariant under a repre-
sentation with dimension d. For example, the star K1

= �100,010, 1̄00,01̄0� is not invariant under any irreducible
three-dimensional representation of any group, because it
will always contain some group elements that will rotate the
star out of the xy plane in which all members of the star are
located. So, Eq. �A6� cannot apply to K1.

On the other hand, considering only the two-dimensional
subvector space spanned by K1 �the xy plane�, the star K2

= �10,01, 1̄0 ,01̄� derived from K1 by appropriate projection,
is invariant under some unitary, irreducible representations of
C4v, some of which have dimension 2 �and some have di-
mension 1�. Of course, the original star K1 is also invariant
under some three-dimensional representations of C4v, but
none of them is irreducible.

If a star is contained entirely in a vector space of dimen-
sion d��d, its members can be expressed in d-dimensional
space as

�kn0� = OB�kn0� � and �kn0� = �kn0� �B†O†, �A7�

where O is an arbitrary rotation matrix of rank d, B is a d

d� projection matrix with Bij =�ij, and �kn0� � is a vector in

Rd�. The matrix B increases the number of elements in the
vector from d� to d, and the rotation matrix O rotates the
resulting vector to an arbitrary position. The vectors ��kn0� ��
also form a star, now in the subvector space Rd�, so that

�
kn0�

�kn0� ��kn0� � =
q

d�
�k0��

21 �A8�

if there exists a group under which the star ��kn0� �� is invari-
ant, and which has a �unitary� irreducible representation of
dimension d�. Therefore,

�
kn0

�kn0��kn0� =
q

d�
�k0�2�OBB†O†� �A9�

using �k0�= �k0�� and applying OB on Eq. �A8� from the left
and B†O† from the right. The matrix �OBB†O†�= P �rotate,
remove element, and rotate back� projects a vector in Rd onto
the vector space isomorphic to Rd�. For example,

P = �1 0 0

0 1 0

0 0 0
� �A10�

for the star K1 introduced above, using its representation in
the xy plane, K2. The construction of the vectors kn0

from kn0� in Eq. �A7� represents an important limitation: At
first sight, Eq. �A9� seems to apply to every star that
has some degree of symmetry. However, not every star
can be written in the form Eq. �A7�. For example, K3
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= �101,011, 1̄01,01̄1� has a C4v symmetry, but this star spans
the entire Rd and so there is no star ��kn0� ���Rd� that would
fulfill Eq. �A7� with d��d.

In a more compact form, the general result is

�
kn0

kn0,�kn0,� =
q

d�
�k0�2P��, �A11�

provided there exists a unitary, irreducible representation of a
group under which the star ��kn0���Rd is invariant, with a
dimension d� identical to that of the space spanned by the
star. Furthermore, if d�=d, then P reduces to the identity.
Equation �A11� can be used in the form

�
��

�
kn0

kn0,�kn0,��x̃�
�x̃�

=
q

d�
�k0�2�

��

P���x̃�
�x̃�

=
q

d�
�k0�2�x̃P�x̃,

�A12�

which leads to Eq. �51�.

Definition of a star

So far, in this appendix, a star has been defined as any set
of k vectors of equal length. We now adopt the standard
definition of a star, which will enforce the conditions re-
quired for Eq. �A6� or Eq. �A11� to apply: A star is generated

from an initial vector by applying all symmetry operations in
the form of a unitary, irreducible representation of the point
group of the lattice in the appropriate coordinate system.18

This representation is chosen so that the lattice itself is in-
variant under its action, so that the star represents a finite
subset of the lattice. The star generated is highly degenerate,
giving rise to the so-called little groups.

There are two important caveats: First, only cubic crystals
have point group symmetries with three-dimensional irreduc-
ible representations. Second, the intersection of two stars
does not necessarily have a irreducible with a dimension
equal to that of the space spanned by the intersection. Gen-
erally, both points can be addressed in the same way, namely,
by decomposing stars or the intersection thereof into smaller
stars which then have the required properties. However, that
produces additional projection matrices, so that, for example,
the isotropic �r̃

2 terms in Eqs. �40� and �51� split into mul-
tiple terms with different projections of the form �r̃P�r̃.

All the cubic point groups, and only the cubic point
groups, have three-dimensional, unitary, irreducible repre-
sentations, and the intersection of any two stars generated by
one of these representations is either empty, one-
dimensional, or it coincides with both stars. For cubic crys-
tals, all equations derived above apply without restrictions,
producing an isotropic term and a anisotropic one with a
single, preferred direction.

*Present address: Department of Mathematics, Imperial College
London, 180 Queen’s Gate, London SW7 2AZ, UK.
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